
1 - 6 RLC-Circuits: special cases

1. RC-Circuit. Model the RC-Circuit in the figure below. Find the current due to a con-
stant E.

E(t)

R

C
RC-−circuit

Current in problem 1

c

t

Current I(t)

ClearAll["Global`*⋆"]

The problem is asking for a look at RC circuit, not RLC. 

The site https : // www.intmath.com/differential - equations/6 - rc - circuits.php assumes a constant 
voltage source, just what the problem specifies. Below: There is no inductance here, only R 
and C.
eqnw = rR (D[eye[t], t]) + eye[t] /∕ cC ⩵ 0
eye[t]

cC
+ rR eye′[t] ⩵ 0

Within a certain range of capacitance and resistance, the plot resembles the one in the 
problem description, and can be manipulated to imitate changing parameters, with the 
voltage remaining constant.
sol2 = DSolve[eqnw, eye, t]

eye → Function{t}, ⅇ-− t
cC rR C[1]

It looks like the current is normalized to 1 at t=0, and the fraction of its max value at a 
given time needs to be estimated from the underlying grid.



It looks like the current is normalized to 1 at t=0, and the fraction of its max value at a 
given time needs to be estimated from the underlying grid.

ManipulatePlotⅇ-− t
cC rR , {t, 0, 3}, PlotRange → All, GridLines → All

, {rR, 0.2, 10}, {cC, 0.01, 1} 

rR

cC

A random scrap from a different perspective, kept as interesing junk.
{ind, cap, res} = {l i'[t] == vl[t], vc'[t] ⩵ 1 /∕ c i[t], r i[t] ⩵ vr[t]};
kirchhoff = vl[t] + vc[t] + vr[t] ⩵ vs[t];

3. RL-Circuit. Model the RL-circuit in the figure below. Find a general solution when R, L, 
E are any constants. Graph or sketch solutions when L = 0.25 H, R = 10 Ω, and E = 48 V.

The above screenshot came from the online app at https://falstad.com/circuit/. The current it 
shows agrees with the old formula for current, I=E/R, and was captured after the resis-
tance had plenty of time to decay. And that’s all it is, except that there is a time constant to 
apply. The time constant becomes ever smaller as the operation time increases. Since the 
problem description talks in terms of a constant state, it seems the time constant would 
become vanishingly small, leaving merely I=E/R=4.8 amps.

2     2.9 Modeling- Electric Circuits 93.nb



The above screenshot came from the online app at https://falstad.com/circuit/. The current it 
shows agrees with the old formula for current, I=E/R, and was captured after the resis-
tance had plenty of time to decay. And that’s all it is, except that there is a time constant to 
apply. The time constant becomes ever smaller as the operation time increases. Since the 
problem description talks in terms of a constant state, it seems the time constant would 
become vanishingly small, leaving merely I=E/R=4.8 amps.

In[60]:= ClearAll["Global`*⋆"]
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When there are a lot of variables to watch, the Manipulate command is the only way I know 
to get an overview. The box below is based on the material at https://www.electronics-tutorial-
s.ws/inductor/lr-circuits.html and may not agree with the text in detail.

In[61]:= eye[vee_, are_, ell_, tee_] =
vee

are
1 -− ⅇ-− are tee

ell 

Out[61]=

1 -− ⅇ-− are tee
ell  vee

are

It takes some time for the current to reach its max value. From t=0.4 on in the green grid 
below, the circuit current is nominal.

In[62]:= Grid[Table[{tee, eye[48, 10, 0.25, tee]}, {tee, 0, 0.6, 0.1}], Frame → All]

Out[62]=

0. 0.
0.1 4.71208
0.2 4.79839
0.3 4.79997
0.4 4.8
0.5 4.8
0.6 4.8
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In[63]:= veel[vee_, are_, ell_, tee_] = vee ⅇ-− are tee
ell 

Out[63]= ⅇ-− are tee
ell vee

In[64]:= Manipulate

Plot{Abs[eye[vee, are, ell, tee]], Abs[veel[vee, are, ell, tee]],
Abs[eye[48, 10, 0.25, tee]]}, {tee, 0, 5},

PlotLegends → "I=
V

R
(1-−ⅇ-− R t

L )", "VL=V(ⅇ-− R t
L )", "L=0.25H,R=10Ω,E=48V",

PlotRange → {{0, 0.1}, {0, 10}}, AxesLabel → {"time", "current I"},
AspectRatio → 0.5, {are, 1, 200}, {ell, 0.01, 10} , {vee, 1, 50}

Out[64]=
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R t
L )

L=0.25H,R=10Ω,E=48V

5.  LC-Circuit. This is an RLC-circuit with negligibly small R (analog of an undamped 
mass-spring system). Find the current when L=0.5 H, C = 0.005 F, and E = Sin[t] V, 
assuming zero initial current and charge.
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I ran across a couple of snippets, including one from the Mathematica documentation, 
suggesting that state space modeling would be a good way to look at circuits in Mathemat-
ica. I use it here.
ClearAll["Global`*⋆"]

eqns = eL q''[t] + aR q'[t] +
1

cC
q[t] ⩵ Vee[t];

m1 = StateSpaceModel[eqns,
{{q[t], 0}, {q'[t], 0}}, {{Vee[t], 0}}, {q'[t]}, t]

0 1 0

-−
1

cC eL
-−
aR

eL

1

eL
0 1 0

𝒮

Here I put in the given parameters, taking the opportunity to equate the resistance with 
zero.
ms = m1 /∕. {cC → 0.005, eL → 0.5, aR → 0}

0 1 0
-−400. 0. 2.

0 1 0

𝒮

The way to get output from a state space model is to use the command OutputResponse. 
Since the voltage depends on a periodic function, I drop the V for the input field, the volt-
age, because it is just a label. 
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outz = OutputResponse[{ms}, Sin[t ], t]

1.46082 × 10-−17 + 0.0526316 ⅈ

(0. + 0.0952381 ⅈ) Cos[20. t] -− (0. + 1. ⅈ) Cos[19. t] Cos[20. t] +

(0. + 0.904762 ⅈ) Cos[20. t] Cos[21. t] -−
1.66533 × 10-−16 -− 7.21645 × 10-−17 ⅈ Cos[20. t] Sin[19. t] -−

2.24688 × 10-−17 + 6.60847 × 10-−19 ⅈ Sin[20. t] +

2.35922 × 10-−16 + 6.93889 × 10-−18 ⅈ Cos[19. t] Sin[20. t] -−

2.13454 × 10-−16 + 6.27805 × 10-−18 ⅈ Cos[21. t] Sin[20. t] +

5.96745 × 10-−17 -− 1. ⅈ Sin[19. t] Sin[20. t] +

1.50673 × 10-−16 -− 6.52917 × 10-−17 ⅈ Cos[20. t] Sin[21. t] -−

5.39912 × 10-−17 -− 0.904762 ⅈ Sin[20. t] Sin[21. t]

It is necessary to clean up the result with a small Chop.

outt = ChopComplexExpand[Re[outz]], 10-−16 /∕/∕ FullSimplify

0.00501253 Cos[1. t] -− 0.00501253 Cos[20. t] + 3.46945 × 10-−18 Cos[39. t]

Recognizing the periodic value of cosine, I can get the expression ready for a second chop 
by doing
outtf = outt /∕. Cos[39. t] → 1

3.46945 × 10-−18 + 0.00501253 Cos[1. t] -− 0.00501253 Cos[20. t]

And then the Chop.

outtff = Chop%, 10-−17

{0.00501253 Cos[1. t] -− 0.00501253 Cos[20. t]}

Testing the identity of those coefficients

1  0.005012531328320802`

199.5

I find that the answer matches the text answer, justifying the green coloration above.

The plot is interesting.
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Plot[outtff, {t, 0, 10}, ImageSize → 350, AspectRatio → 0.6,
PlotRange → {{-−0.01, 10}, {-−0.015, 0.015}}, PlotStyle → Thickness[0.003]]

2 4 6 8 10

-−0.015

-−0.010

-−0.005

0.005

0.010

0.015

7 - 18 General RLC-circuits

7.  Tuning. In tuning a sterio system to a radio station, we adjust the tuning control (turn 
a knob) that changes C (or perhaps L) in an RLC-circuit so that the amplitude of the 
steady-state current, numbered line (5), p. 95 becomes maximum. For what C will this 
happen?

It is where the particular solution of the homogeneous equation is maximized. Numbered 
line (5) looks like

Ip (t) = I0 Sin[ω t -− θ]

The quantity θ is known as the phase lag, and, I suppose, the signal is best, Ip maximized, 
when θ equals zero.

8 - 14 Find the steady-state current in the RLC-circuit in the figure below for the given 
data. 

9.  R = 4 Ω, L = 0.1 H, C = 0.05 F, E = 110 V

L D[q[t], {t, 2}] + R D[q[t], t] -− 1
C q[t] = v[t]

eqn = 0.1 q''[t] + 4 q'[t] -−
1

0.05
q[t] ⩵ 110

-−20. q[t] + 4 q′[t] + 0.1 q′′[t] ⩵ 110

sol = DSolve[eqn, q, t]

q → Function{t}, -−5.5 + ⅇ-−44.4949 t C[1] + ⅇ4.4949 t C[2]

If C[1]=C[2]=0, then the green cell above matches the text answer.

11.  R = 12 Ω, L = 0.4 H, C = 1
80F, E = 220 Sin[10 t] V
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11.  R = 12 Ω, L = 0.4 H, C = 1
80F, E = 220 Sin[10 t] V

The state space method has been working where former methods I tried did not, so it 
makes sense to stick with it.
ClearAll["Global`*⋆"]

eqns = eL q''[t] + aR q'[t] +
1

cC
q[t] ⩵ Vee[t];

m1 = StateSpaceModel[eqns,
{{q[t], 0}, {q'[t], 0}}, {{Vee[t], 0}}, {q'[t]}, t]

0 1 0

-−
1

cC eL
-−
aR

eL

1

eL
0 1 0

𝒮

Here I put in the given parameters.

ms = m1 /∕. cC →
1

80
, eL → 0.4, aR → 12

0 1 0
-−200. -−30. 2.5

0 1 0

𝒮

The way to get output from a state space model is to use the command OutputResponse. 
outz = OutputResponse[{ms}, 220 Sin[10 t ], t]

0. + ⅇ-−30. t 22. ⅇ10. t -− 27.5 ⅇ20. t -− 7.10543 × 10-−15 ⅇ20. t Cos[10. t] +

5.5 ⅇ30. t Cos[10. t] + 7.10543 × 10-−15 ⅇ20. t Sin[10. t] +
16.5 ⅇ30. t Sin[10. t] + 7.10543 × 10-−15 ⅇ40. t Sin[10. t]

It is necessary to clean up the result with a Chop.

outt = Chopoutz, 10-−14 /∕/∕ FullSimplify

22. ⅇ-−20. t -− 27.5 ⅇ-−10. t + 5.5 Cos[10. t] + 16.5 Sin[10. t]

I guess the ⅇ factors can be dropped if they are small enough, say, at 3 seconds.

N-−27.500000000000007` ⅇ-−10.` t /∕. t → 3

-−2.57335 × 10-−12

Evidently the text considers that size to be negligible, leaving

5.5 Cos[10. t] + 16.5 Sin[10. t]

as the answer. The plot looks routine.
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Plot[5.5 Cos[10. t] + 16.5 Sin[10. t],
{t, 0, 10}, ImageSize → 350, AspectRatio → 0.6,
PlotRange → {{-−0.01, 10}, {-−22, 22}}, PlotStyle → Thickness[0.003]]

2 4 6 8 10

-−20

-−10
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13.  R = 12, L = 1.2 H, C = 203 *10-−3 F, E = 12,000 Sin[25 t] V

C= 20
3 *⋆ 1

1000 = 20
3000 = 2

300

ClearAll["Global`*⋆"]

eqns = eL q''[t] + aR q'[t] +
1

cC
q[t] ⩵ Vee[t];

m1 = StateSpaceModel[eqns,
{{q[t], 0}, {q'[t], 0}}, {{Vee[t], 0}}, {q'[t]}, t]

0 1 0

-−
1

cC eL
-−
aR

eL

1

eL
0 1 0

𝒮

Here I put in the given parameters.

ms = m1 /∕. cC →
20

3
*⋆ 10-−3, eL → 1.2, aR → 12

0 1 0
-−125. -−10. 0.833333

0 1 0

𝒮

The way to get output from a state space model is to use the command OutputResponse. 
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outz = OutputResponse[{ms}, 12 000 Sin[25 t ], t]

(0. + 0. ⅈ) -− 400. + 1.56319 × 10-−14 ⅈ ⅇ-−5. t

(-−1. + 0. ⅈ) Cos[10. t] + (1. + 0. ⅈ) ⅇ5. t Cos[10. t]2 Cos[25. t] +

0.75 -− 4.80505 × 10-−16 ⅈ Sin[10. t] -−

3.19744 × 10-−16 -− 3.21521 × 10-−16 ⅈ ⅇ5. t Cos[10. t] Cos[25. t]

Sin[10. t] + 1. + 2.45581 × 10-−16 ⅈ ⅇ5. t Cos[25. t] Sin[10. t]2 -−

0.5 -− 7.49623 × 10-−17 ⅈ ⅇ5. t Cos[10. t]2 Sin[25. t] +

1.42109 × 10-−16 -− 9.97247 × 10-−17 ⅈ ⅇ5. t Cos[10. t] Sin[10. t]

Sin[25. t] -− 0.5 -− 1.39035 × 10-−16 ⅈ ⅇ5. t Sin[10. t]2 Sin[25. t]

It is necessary to clean up the result with a Chop.

outt = ChopComplexExpand[Re[outz]], 10-−15 /∕/∕ Simplify

-−300. ⅇ-−5. t Sin[10. t] +

Cos[10. t] 400. ⅇ-−5. t + 1.27898 × 10-−13 Cos[25. t] Sin[10. t] -−

2.84217 × 10-−14 Sin[20. t] Sin[25. t] +
Cos[10. t]2 (-−400. Cos[25. t] + 200. Sin[25. t]) +
Sin[10. t]2 (-−400. Cos[25. t] + 200. Sin[25. t])

There is a sin2+cos2 trig identity in the above, but I’m going to have to pull it out by hand.
outhnd = -−300. ⅇ-−5. t Sin[10. t] +

Cos[10. t] 400. ⅇ-−5. t + (-−400. Cos[25. t] + 200. Sin[25. t])

400. ⅇ-−5. t Cos[10. t] -− 400. Cos[25. t] -− 300. ⅇ-−5. t Sin[10. t] + 200. Sin[25. t]

outhnd2 = Collectouthnd, ⅇ-−5. t

Clear["Global`*⋆"]

-−400. Cos[25. t] + ⅇ-−5. t (400. Cos[10. t] -− 300. Sin[10. t]) + 200. Sin[25. t]

While I was pulling things out by hand, I pulled out a choppable term. The text constant B 
is equal to -300. The text constant A is equal to 1 in one position and 400 in another posi-
tion. That makes my answer wrong, technically. I guess I should make it yellow, though I 
don’t feel it is a just action to do so. I feel like it is correct.

10     2.9 Modeling- Electric Circuits 93.nb



Plot-−400.` Cos[25.` t] + ⅇ-−5.` t (400.` Cos[10.` t] -− 300.` Sin[10.` t]) +

200.` Sin[25.` t], {t, 0, 4}, ImageSize → 350, AspectRatio → 0.6,
PlotRange → {{-−0.01, 4}, {-−600, 500}}, PlotStyle → Thickness[0.003]

1 2 3 4

-−600

-−400

-−200

200

400

15. Cases of damping. What are the conditions for an RLC-circuit to be (I) overdamped, 
(II) critically damped, (III) underdamped? What is the critical resistance Rcrit (the analog 
of the critical damping constant 2 m k  ?

16 - 18 Solve the initial value problem for the RLC-circuit shown below, with the given 
data, assuming zero initial current and charge. Graph or sketch the solution. 

E(t)=E0 Sin[ω𝜔 t]

R

L

RLC-−circuit

C

17.  R = 6 Ω, L = 1 H, C = 0.04 F, E = 600(Cos[t] + 4 Sin[t])V

ClearAll["Global`*⋆"]

eqns = eL q''[t] + aR q'[t] +
1

cC
q[t] ⩵ Vee[t];
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m1 = StateSpaceModel[eqns,
{{q[t], 0}, {q'[t], 0}}, {{Vee[t], 0}}, {q'[t]}, t]

0 1 0

-−
1

cC eL
-−
aR

eL

1

eL
0 1 0

𝒮

Here I put in the given parameters.
ms = m1 /∕. {cC → 0.04, eL → 1, aR → 6}

0 1 0
-−25. -−6 1
0 1 0

𝒮

The way to get output from a state space model is to use the command OutputResponse. 
outz = OutputResponse[{ms}, 600 (Cos[t] + 4 Sin[t]), t]

(0. + 0. ⅈ) +

ⅇ-−3. t -−100. -− 1.11022 × 10-−14 ⅈ Cos[4. t] + 100. + 1.11022 × 10-−14 ⅈ

ⅇ3. t Cos[t] Cos[4. t]2 -− 1.87214 × 10-−14 -− 1.65445 × 10-−14 ⅈ

ⅇ3. t Cos[4. t]2 Sin[t] + 75. + 1.52656 × 10-−14 ⅈ Sin[4. t] -−

8.65974 × 10-−15 + 1.80411 × 10-−14 ⅈ ⅇ3. t Cos[t] Cos[4. t] Sin[4. t] +

2.27374 × 10-−13 + 2.91161 × 10-−14 ⅈ ⅇ3. t Cos[4. t] Sin[t] Sin[4. t] +

100. -− 1.14492 × 10-−14 ⅈ ⅇ3. t Cos[t] Sin[4. t]2 -−

0. + 7.91555 × 10-−14 ⅈ ⅇ3. t Sin[t] Sin[4. t]2

outt = Chop[ComplexExpand[Re[outz]]] /∕/∕ Simplify

-−100. ⅇ-−3. t Cos[4. t] + 100. Cos[t] Cos[4. t]2 +

Sin[4. t] 75. ⅇ-−3. t + 100. Cos[t] Sin[4. t]

outtf = Collectoutt, ⅇ-−3. t

100. Cos[t] Cos[4. t]2 + 100. Cos[t] Sin[4. t]2 +

ⅇ-−3. t (-−100. Cos[4. t] + 75. Sin[4. t])

I can see the sin2+cos2 identity in the above, but will have to take it out by hand.

100. Cos[t] + ⅇ-−3. t (-−100. Cos[4. t] + 75. Sin[4. t])

And with that, the above cell matches the text answer.
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Plot100. Cos[t] + ⅇ-−3. t (-−100. Cos[4. t] + 75. Sin[4. t]),
{t, 0, 10}, ImageSize → 350, AspectRatio → 0.6,
PlotRange → {{-−0.01, 10}, {-−125, 125}}, PlotStyle → Thickness[0.003]

2 4 6 8 10

-−100

-−50

50
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19. Writing report. Mechanical-electrical analogy. Explain table 2.2 (reproduced below) 
in a 1 - 2 page report with examples, e.g. the analog (with L = 1 H) of a mass-spring 
system of mass 5 kg, damping constant 10 kg/sec, spring constant 60 kg/sec2, and driv-
ing force 220 cos 10t kg/sec.

Electrical System Mechanical System
Inductance L Mass m

Reciprocal 1
c

of capacitance Spring modulus k

Derivative E0ω Cos[ω
t] of electromotive force

Driving force F0Cos[ω t]

Current I(t) Displacement y(t)

The equivalent equations of state are given on p. 97 as

Le *⋆ Ie''[t] + Re *⋆ Ie'[t] +
1

Ce
*⋆ Ie[t] = E0 *⋆ ω *⋆ Cos[ω t]

for the electrical version and
m *⋆ y''[t] + c *⋆ y'[t] + k *⋆ y[t] = F0 Cos[ω t]

for the mechanical version. The problem details of the mechanical system are set forth as
In[28]:= m = 5;

c = 10;
k = 60;
F0 = 220 Cos[10 t];

To see if I have the mechanical side down, let me try to get a function for the displacement 
y.
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In[5]:= eqn1 = 5 y''[t] + 10 y'[t] + 60 y[t] ⩵ 220 Cos[10 t]

Out[5]= 60 y[t] + 10 y′[t] + 5 y′′[t] ⩵ 220 Cos[10 t]

Mathematica solves the equation without difficulty; however, the solution is not as simple 
an expression as I could wish.

In[8]:= sol = DSolve[eqn1, y, t];

The solution does backtest successfully.
In[9]:= eqn1 /∕. sol /∕/∕ Simplify

Out[9]= {True}

And the resulting plot is typical of a forced SHM.
In[51]:= solp = sol /∕. {C[1] → 1, C[2] → 1};

In[23]:= Plot[y[t] /∕. solp, {t, 0, 6}, PlotStyle → Thickness[0.003]]

Out[23]=

1 2 3 4 5 6

-−1.0

-−0.5

0.5

1.0

1.5

I can extract the actual function
In[47]:= solpt = solp[[1, 1, 2, 2]];

and make a table of a few of its output points.
In[53]:= Table[{n, solpt /∕. t → n}, {n, 0, 2, 0.1}]

Out[53]= {{0., 0.524558}, {0.1, 0.984198}, {0.2, 1.44535}, {0.3, 1.51068},
{0.4, 1.04147}, {0.5, 0.312714}, {0.6, -−0.208772}, {0.7, -−0.263182},
{0.8, -−0.00994748}, {0.9, 0.13955}, {1., -−0.0861754},
{1.1, -−0.562744}, {1.2, -−0.884539}, {1.3, -−0.743297},
{1.4, -−0.221009}, {1.5, 0.273882}, {1.6, 0.369945}, {1.7, 0.0631134},
{1.8, -−0.288775}, {1.9, -−0.301581}, {2., 0.0781706}}

The lhs variables are easily determined when the proportionality constant resultant from a 
mechanical system based on 5 kg and an electrical one based on 1 H is considered. That 
would be

14     2.9 Modeling- Electric Circuits 93.nb



1 H, 2 Ω, and
1

12
Farad

To solve the rhs I can first solve the coefficient situation,
In[59]:= Solve[5 *⋆ 10 *⋆ x *⋆ Cos[10 t] -− 220 *⋆ Cos[ 10 t] ⩵ 0, x]

Out[59]= x →
22

5


and then consider that because what is wanted is the derivative of the electromotive force, I 
will be looking at

-−4.4 Sin[10 t]

as the rhs. The text answer agrees, except it does not show a negative sign, and in terms of 
making up the system equation I believe the voltage expression on the rhs is better left 
unsigned.
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